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Abstract
In this paper it is proved that the quantum relative entropy D(ρ‖σ) can be
asymptotically attained by the relative entropy of probabilities given by a certain
sequence of positive-operator-valued measures (POVMs). The sequence of
POVMs depends on σ , but is independent of the choice of ρ.

PACS numbers: 0367, 0220, 0365B

1. Introduction

In classical statistical theory, the relative entropy D(p‖q) is an information quantity which
represents the statistical efficiency in distinguishing a probability measure p from another
probability measure q. In the quantum mechanical case, states are described by density
operators on a Hilbert space H, which represents a physical system of interest. We can
distinguish quantum states by data given through quantum measurements. A quantum
measurement is described by a positive-operator-valued measure (POVM) M = {Mi}i∈I ,
which is a partition of the unit into positive operators. A POVM M = {Mi}i∈I satisfying
M2

i = Mi for any index i is called a projection-valued measure (PVM); this plays an important
role in this paper. When the quantum measurement corresponding to a POVM M is made on
the system in a state ρ, the data obey the probability distribution P M

ρ (i) := Tr Miρ.
The quantum relative entropy D(ρ‖σ) := Tr ρ(log ρ − log σ) is known as a quantum

analogue of the relative entropy. However, the information quantity, which is directly linked
to statistical significance, is not the quantum relative entropy D(ρ‖σ), but the relative entropy
DM(ρ‖σ) := D(P M

ρ ‖P M
σ ). Concerning the relation between the two quantities D(ρ‖σ) and

DM(ρ‖σ), we have the following inequality from the monotonicity of the quantum relative
entropy [1, 2]:

DM(ρ‖σ) � D(ρ‖σ) (1)

where the equality holds for some M if and only if ρσ = σρ (see Petz [6], proposition 1.16 in
Ohya–Petz [5] and Fujiwara–Nagaoka [7]). As for the inequality (1), Hiai and Petz [3] proved
that even if the states ρ and σ are not commutative with one another, the equality is attained in
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an asymptotic setting as described below. First, we introduce the quantum i.i.d. condition in
order to treat an asymptotic setting. Suppose that n independent physical systems are given in
the same state ρ, then the quantum state of the composite system is described by ρ⊗n, defined
by

ρ⊗n := ρ ⊗ · · · ⊗ ρ︸ ︷︷ ︸
n

on H⊗n

where the tensored space H⊗n is defined by

H⊗n := H ⊗ · · · ⊗ H︸ ︷︷ ︸
n

.

We call this condition the quantum i.i.d. condition, which is a quantum analogue of the
independent-identical-distribution condition. Under the quantum i.i.d. condition, the equation

D(ρ⊗n‖σ ⊗n) = nD(ρ‖σ)

holds. Hiai and Petz [3] proved the following theorem. (For the infinite-dimensional case, see
Petz [4].)

Theorem 1. Let k be the dimension of H and let σ and ρn be states on H and H⊗n, respectively.
Then there exists a POVM Mn on tensored space H⊗n such that

1

n
D(ρn‖σ ⊗n) − (k − 1) log(n + 1)

n
� 1

n
DMn

(ρn‖σ ⊗n) � 1

n
D(ρn‖σ ⊗n). (2)

When the limit limn→∞ 1
n
D(ρn‖σ ⊗n) converges, the equation

lim
n→∞

1

n
DMn

(ρn‖σ ⊗n) = lim
n→∞

1

n
D(ρn‖σ ⊗n)

holds.

Theorem 1 tells us that there exists a sequence {Mn} satisfying (2) which may depend on both
{ρn} and σ . In this paper, using a representation theoretical argument on the representation of
SL(H) on H⊗n, we prove that there exists a sequence {Mn} satisfying (2) which depends only
on σ when the sequence {ρn} satisfies the quantum i.i.d. condition; i.e. the state ρn is ρ⊗n. The
following is the main theorem.

Theorem 2. Let k be the dimension of H and let σ be a state on H. Then there exists a POVM
Mn on the tensored space H⊗n which satisfies

D(ρ‖σ) − (k − 1) log(n + 1)

n
� 1

n
DMn

(ρ⊗n‖σ ⊗n) � D(ρ‖σ) ∀ρ. (3)

In section 2, we prove theorem 2 and discuss the difference between our proof and the proof of
theorem 1 given by Hiai and Petz [3]. In section 3, we explain some results in representation
theory which are necessary for the proof of theorem 2. At the end of section 3, we construct
the POVM Mn satisfying (3). In section 4, we extend theorem 2 to the infinite-dimensional
case.

If we perform the POVM Mn satisfying (3), we can attain the quantum relative entropy
D(ρ‖σ) w.r.t. the rate of the second error probability in the quantum hypothesis testing: the
null hypothesis is ρ⊗n and the alternative is σ ⊗n. Theorem 2 claims that the POVM Mn is
independent of the alternative ρ. Therefore, the POVM Mn is useful for the quantum hypothesis
testing, in which the alternative hypothesis consists of plural tensored states. In addition, an
application of theorem 2 to the quantum estimation will be discussed in another paper [9] in
preparation.
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2. Proof of the main theorem

In this section, we will prove the main theorem after some discussions about PVMs and the
quantum relative entropy in the non-asymptotic setting. We make some definitions for this
purpose. A state ρ is called commutative with a PVM E(= {Ei}) on H if ρEi = Eiρ for
any index i. For PVMs E(= {Ei}i∈I ), F (= {Fj }j∈J ), the notation E � F means that for any
index i ∈ I there exists a subset (F/E)i of the index set J such that Ei = ∑

j∈(F/E)i
Fj . For

a state ρ, we denote E(ρ) by the spectral measure of ρ, which can be regarded as a PVM. The
map EE with respect to a PVM E is defined as

EE : ρ �→
∑

i

EiρEi (4)

which is an affine map from the set of states to itself. Note that the state EE(ρ) is commutative
with a PVM E. If a PVM F = {Fj } is commutative with a PVM E = {Ei}, then we can define
the PVM F × E = {Fj Ei}, which satisfies that F × E � E and F × E � F .

Theorem 3. Let E be a PVM such that w(E) := supi dim Ei < ∞. If states σ, ρ are
commutative with the PVM E and a PVM F satisfies E � F, E(σ) � F , then we have

D(ρ‖σ) − log w(E) � D(EF (ρ)‖EF (σ )) � D(ρ‖σ). (5)

This theorem follows from lemma 2 and lemma 3 below. Using theorem 3 and the following
lemma, we will prove the main theorem.

Lemma 1. There exists a PVM En on H⊗n which is commutative with ρ⊗n for any ρ and
satisfies the relation w(En) � (n + 1)(k−1).

Lemma 1 is proved in the next section from a representation theoretical viewpoint. Now, let
En be a PVM satisfying the condition given in lemma 1. Then there exists a PVM F n such
that F n � En × E(σ ⊗n) and that w(F n) = 1. Using theorem 3, we have the following.

D(ρ‖σ) − (k − 1) log(n + 1)

n
� 1

n
D(EF n(ρ⊗n)‖EF n(σ ⊗n))

� D(ρ‖σ) ∀ρ. (6)

Since the condition w(F n) = 1 implies the equation D(EF n(ρ⊗n)‖EF n(σ ⊗n)) =
DF n

(ρ⊗n‖σ ⊗n), we obtain theorem 2.
Let us compare the above argument with that of Hiai and Petz [3]. We first note that the

inequality DF (ρ‖σ) � D(EF (ρ)‖EF (σ )) holds for any PVM, but the equality, in general,
does not hold unless w(F ) = 1. Instead of (6), Hiai and Petz proved the following:

1

n
D(ρn‖σ ⊗n) − (k − 1) log(n + 1)

n
� 1

n
D(EE(σ ⊗n)(ρ

⊗n)‖EE(σ ⊗n)(σ
⊗n))

� 1

n
D(ρn‖σ ⊗n). (7)

In the case when ρn = ρ⊗n, this is the same as (6) except that E(σ ⊗n) is substituted for
F n. Since w(E(σ ⊗n)) = 1 does not hold, however, D(EE(σ ⊗n)(ρ

⊗n)‖EE(σ ⊗n)(σ
⊗n)) cannot

be replaced with DE(σ ⊗n)(ρ⊗n‖σ ⊗n) here. In other words, even though the PVM E(σ ⊗n)

does not depend on a state ρ, the inequality (7) does not imply the existence of a PVM Mn

depending only on σ and satisfying (3) for all ρ. Indeed, the PVM Mn which was shown to
satisfy (2) in [3] is not E(σ ⊗n), but E(σ ⊗n)×E(EE(σ ⊗n)(ρn)), which depends on ρn in general.
Therefore, the discussion of Hiai and Petz [3] does not imply theorem 2.

Now, we prove two lemmas used in a proof of theorem 3. The following lemma 2 is the
same as lemma 3.1 of Hiai and Petz [3] and theorem 1.13 of Ohya and Petz [5]. However,
lemma 2 is proved in the following because it plays a particularly important role in our proof
of the main theorem.
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Lemma 2. Let ρ, σ be states. If a PVM F satisfies E(σ) � F , then

D(ρ‖σ) = D(EF (ρ)‖EF (σ )) + D(ρ‖EF (ρ)). (8)

Proof. As E(σ) � F and F is commutative with σ , we have Tr EF (ρ) log EF (σ ) = Tr ρ log σ .
Since ρ is commutative with log ρ, we have Tr EF (ρ) log ρ = Tr ρ log ρ. Therefore, we obtain
the following:

D(EF (ρ)‖EF (σ )) − D(ρ‖σ) = Tr EF (ρ)(log EF (ρ) − log EF (σ )) − Tr ρ(log ρ − log σ)

= Tr EF (ρ)(log EF (ρ) − log ρ).

This proves (8). �

Lemma 3. Let E, F be PVMs such that E � F . If a state ρ is commutative with E, then we
have

D(ρ‖EF (ρ)) � log w(E). (9)

Proof. Let ai := Tr EiρEi, ρi := 1
ai

EiρEi . Then we have ρ = ∑
i aiρi , EF (ρ) =∑

i aiEF (ρi) and
∑

i ai = 1. Therefore,

D(ρ‖EF (ρ)) =
∑

i

Tr Eiρ(log ρ − log EF (ρ))

=
∑

i

Tr EiρEi(Ei log ρEi − Ei log EF (ρ)Ei)

=
∑

i

aiD(ρi‖EF (ρi)) � sup
i

D(ρi‖EF (ρi))

= sup
i

(Tr ρi log ρi − Tr EF (ρi) log EF (ρi))

� − sup
i

Tr EF (ρi) log EF (ρi) � sup
i

log dim Ei = log w(E).

Thus, we obtain inequality (9). �

It is interesting to compare (9) with lemma 3.2 of Hiai and Petz [3], which was used to show (7);
i.e.,

D(ρ‖EF (ρ)) � log h(F )

where h(F ) denotes the number of indices i ∈ I for the PVM F = {Fi}i∈I .

3. Quantum i.i.d. condition from group theoretical viewpoint

In this section, we discuss the quantum i.i.d. condition from a group theoretical viewpoint
for the purpose of lemma 1. In section 3.1, we consider the relation between irreducible
representations and PVMs. In section 3.2, we discuss the quantum i.i.d. condition and PVMs
from a theoretical viewpoint.



Asymptotics of quantum relative entropy 3417

3.1. Group representation and its irreducible decomposition

Let V be a finite-dimensional vector space over the complex numbers C. A map π from a
group G to the generalized linear group of a vector space V is called a representation on V

if the map π is a homomorphism, i.e. π(g1)π(g2) = π(g1g2), ∀g1, g2 ∈ G. A subspace W

of V is called invariant with respect to a representation π if the vector π(g)w belongs to the
subspace W for any vector w ∈ W and any element g ∈ G. A representation π is called
irreducible if there is no proper nonzero invariant subspace of V with respect to π . Let π1 and
π2 be representations of a group G on V1 and V2, respectively. The tensored representation
π1 ⊗ π2 of G on V1 ⊗ V2 is defined as (π1 ⊗ π2)(g) = π1(g) ⊗ π2(g), and the direct sum
representation π1 ⊕ π2 of G on V1 ⊕ V2 is also defined as (π1 ⊕ π2)(g) = π1(g) ⊕ π2(g).

In the following, we treat a representation π of a group G on a finite-dimensional Hilbert
space H. The following facts are crucial in the later arguments. There exists an irreducible
decomposition H = H1 ⊕· · ·⊕Hl such that the irreducible components are orthogonal to one
another if for any element g ∈ G there exists an element g∗ ∈ G such that π(g)∗ = π(g∗),
where π(g)∗ denotes the adjoint of the linear map π(g). We can regard the irreducible
decomposition H = H1⊕· · ·⊕Hl as the PVM {PHi

}l
i=1, where PHi

denotes the projection to Hi .
If two representations π1, π2 satisfy the preceding condition, then the tensored representation
π1 ⊗π2 also satisfies it. Note that, in general, an irreducible decomposition of a representation
satisfying the preceding condition is not unique. In other words, we cannot uniquely define
the PVM from such a representation.

3.2. Relation between the tensored representation and PVMs

Let the dimension of the Hilbert space H be k. Concerning the natural representation
πSL(H) of the special linear group SL(H) on H, we consider its nth tensored representation
π⊗n

SL(H) := πSL(H) ⊗ · · · ⊗ πSL(H)︸ ︷︷ ︸
n

on the tensored space H⊗n. For any element g ∈ SL(H), the

relation πSL(H)(g)∗ = πSL(H)(g
∗) holds, where the element g∗ ∈ SL(H) denotes the adjoint

matrix of the matrix g. Consequently, there exists an irreducible decomposition of π⊗n
SL(H)

regarded as a PVM and we denote the set of such PVMs by Ir⊗n.
From the Weyl dimension formula ((7.1.8) or (7.1.17) of Goodman and Wallch [8]), the

nth symmetric tensored space is the maximum-dimensional space in the irreducible subspaces
with respect to the nth tensored representation π⊗n

SL(H). Its dimension is equal to the repeated

combination kHn evaluated by kHn = (
n+k−1
k−1

) = (
n+k−1

n

) = n+1Hk−1 � (n + 1)k−1. Thus,
any element En ∈ Ir⊗n satisfies that

w(En) � (n + 1)k−1. (10)

Lemma 4. A PVM En ∈ Ir⊗n is commutative with the nth tensored state ρ⊗n of any state ρ

on H.

Proof. If det ρ �= 0, then this lemma is trivial from the fact that det(ρ)−1ρ ∈ SL(H). If
det ρ = 0, there exists a sequence {ρi}∞i=1 such that det ρi �= 0 and ρi → ρ as i → ∞. We
have ρ⊗n

i → ρ⊗n as i → ∞. Because a PVM En ∈ Ir⊗n is commutative with ρ⊗n
i , it is also

commutative with ρ⊗n. �

Now, we can see that lemma 1 follows from lemma 4 and (10).
From the above discussion, if the PVM Mn satisfies w(Mn) = 1 and E(σ ⊗n)×En � Mn

for some En ∈ Ir⊗n, the inequality (3) holds. In many cases, the relation w(E(σ ⊗n)×En) = 1
holds. Therefore, in these cases, the PVM E(σ ⊗n) × En satisfies (3). For example, if the
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eigenvalues of σ are rationally independent of each other, the relation holds for arbitrary n.
Also, in the spin-1/2 system except σ = 1

2 Id, the relation holds. In this case, the POVM
E(σ ⊗n) × En can be regarded as a simultaneous measurement of the total momentum and the
momentum of the direction specified by σ .

4. Infinite-dimensional case

Next, we prove an infinite-dimensional version of theorem 2. Let B(H) be the set of bounded
operators on H, and B(H)⊗n be B(H) ⊗ · · · ⊗ B(H)︸ ︷︷ ︸

n

. According to [5], from the separability of

H, there exists a finite-dimensional approximation of H, i.e. a sequence {αn : B(Hn) → B(H)}
of unit-preserving completely positive maps such that Hn is finite dimensional and

lim
n→∞ D(α∗

n(ρ)‖α∗
n(σ )) = D(ρ‖σ) (11)

for any states ρ, σ on H such that µσ � ρ � λσ for some positive real numbers µ, λ,
where α∗

n is the adjoint of αn. From (3) and (11), for any positive integer n there exists a pair
(ln, Mn′ := {Mn

i
′}) of an integer and a PVM on H⊗ln

n such that

D(α∗
n(ρ)‖α∗

n(σ )) − DMn ′ (
(α∗

n(ρ))⊗ln
∥∥(α∗

n(σ ))⊗ln
)

ln
<

1

n
. (12)

The completely positive map α⊗l
n from B(Hn)⊗l to B(H)⊗l is defined as α⊗l

n (A1 ⊗ A2 ⊗ · · · ⊗
Al) = αn(A1) ⊗ αn(A2) ⊗ · · · ⊗ αn(Al) for ∀Ai ∈ B(H). We have

(
α⊗l

n

)∗
(ρ⊗l) = α∗

n(ρ)⊗l .
Let Mn := {α⊗ln

n (Mn
i

′)}, then from (11), (12) we obtain

DMn

(ρ⊗ln‖σ ⊗ln )

ln
= DMn ′((

α⊗ln
n

)∗(
ρ⊗ln

)∥∥(
α⊗ln

n

)∗(
σ ⊗ln

))

ln

= DMn ′ (
α∗

n(ρ)⊗ln
∥∥ α∗

n(σ )⊗ln
)

ln

> D
(
α∗

n(ρ)‖α∗
n(σ )

)
+

1

n
→ D(ρ‖σ) as n → ∞.

Therefore, we obtain an infinite-dimensional version of theorem 2. Note that such a POVM
Mn is independent of ρ.

Conclusions

It is proved that the quantum relative entropy D(ρ‖σ) is attained by the sequence of the relative
entropies given by a certain sequence of PVMs which is independent of ρ. This formula is
closely related to the quantum asymptotic detection. The physical realization of the sequence
of measurements corresponding to PVMs satisfying (3) is left for future study. In the spin-1/2
system, it follows from the representation theoretical viewpoint in section 3 that it is enough
to simultaneously measure the total momentum and the momentum of the direction specified
by σ .
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